
JOURNAL OF COMPUTATIONAL PHYSICS 27, 351-362 (1978) 

Campylotropic Coordinates 

C. M. ABLOW AND S. SCHECHTER* 

Stanford Research Institute, Menlo Park, California 94025 

Received January 26, 1977; revised July 21, 1977 

In boundary value problems for ordinary differential equations the tinite-ditference 
calculations for solutions having large variation over a narrow region often lose accuracy 
because of mesh irregularity, short steps being needed in the boundary layer and large 
steps elsewhere. This loss is eliminated by transformation to coordinates where a uniform 
mesh can be used. Several examples show that it is advantageous to take a linear com- 
bination of length and angular variation along the solution curve as the transformed 
coordinate for the one-dimensional case, only one-tenth as many nodes being needed in 
some cases as for other current methods. 

1. INTRODUCTION 

The truncation error of a compact finite-difference approximation to a boundary 
value problem for an ordinary differential equation is controlled by refining the mesh 
in regions where derivatives of the solution are large while retaining as smooth a mesh 
as possible to raise the order of the approximation. These conflicting requirements 
may be reconciled by employing a uniform mesh in a transformed coordinate system 
that expands the scale in regions where the solution has rapid variation. The particular 
transformation proposed here is defined intrinsically along with the solution so that 
the region for mesh refinement need not be knotin in advance. This makes the method 
applicable to cases with internal boundary layers. 

Current mesh adjustment and node addition schemes, such as those of deBoor [I], 
and Pereyra and co-workers [2], or Pearson [3], require mesh widths small enough to 
counter the nearly singular behavior in the boundary layer so that the use of thousands 
of nodes in a unit interval is common [3]. No more than 129 nodes have been needed 
to achieve acceptable accuracy for any of the examples treated here. This small 
memory requirement makes the present method attractive for extension to systems of 
ordinary differential equations or to partial differential equations. 
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2. THE TRANSFORMATION 

Let the differential equation relate dependent variable y to independent variable x. 
The solution of the differential equation is represented by a curve in the (x, y) plane. 
It is assumed that, by some preliminary scaling, x and y have become comparable 
quantities with variations contributing about equally to the total length of the solution 
curve. The distance variable s along the curve is found from 

x,2+y:=1. (1) 

Distance is an attractive candidate coordinate because the derivatives x, and y, are 
bounded by 1, whatever the magnitude of yz . 

A difference method based on s will be less accurate in a region where the solution 
curve has a large change of direction over a short distance. For this reason, a coor- 
dinate t is proposed that increases with s and with changes in 8, the inclination of the 
solution curve: 

or 
t, = 1 + c I 4 I (2) 

where C is a nonnegative constant length to be chosen. The relation of t to x and y is 
found from Eqs. (1) and (2) to be 

w + ~t”)u + c I es02 = 1. (3) 

Variable t is the campylotropic (curvature-seeking) coordinate being presented. 

3. DIFFERENTLU EQUATIONS 

The differential equations considered here are of second order, 

Y 22 = f(x, Y9 Y3* (4) 

Introducing t as independent variable gives 

XtYtt - Y&t = xt3fcG YY Yt/Xt)- (5) 

Now 
8 s = Y 41 + ~33'2 cw 9 

= xt"f/(xt" + yt2)3’2. 
(6) 

Let u be the sign off and assume that s and t increase in the direction of increasing x. 
Then 

I 8, I = ~+fi(~t” + ~573’2 (7) 
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so that Eq. (3) becomes 

(xt2 + yt2)3/2 + Coxt3f = Xi2 + yt2. (8) 

Except where u is discontinuous, one may differentiate to obtain 

(XtXtt + yty,,)]3W + Yt2P2 - 21 + C%“(3%f + xth) = 0 (9) 

where 

h =hYt + K! +f,,.f> xt. (10) 

Equations (5) and (9) are a pair of second-order differential equations for the 
variables x and y as functions of independent coordinate t. Considered as a quasilinear 
system for xtt and ytt , the determinant of the coefficients is 

-([3(x,2 + yty - 21(x? + y,y + 3Cufx,3}. 

By Eq. (8) the expression equals -(xtz + t:) which by Eq. (3) is bounded and 
bounded away from zero for solutions of bounded curvature. The system of differen- 
tial equations (5) and (9) is, therefore, nonsingular. 

4. DIFFERENCE EQUATIONS 

Difference approximations of second-order accuracy in the mesh length h are 

Xt f (Xl - x-,)/2/?, 
X tt =& (Xl - 243 + X-l)/h2, 

(11) 

with the similar equations for the y derivatives, where the subscripts - 1, 0, 1 denote 
adjacent mesh nodes in order of increasing t. 

The difference forms for Eqs. (5) and (9) are obtained by substitution for the deriva- 
tives of the approximations given by Eq. (11) and evaluation of functionsS,f, , f, , f,, 
and (T at each point. The solution is then computed by the iterative Newton-Raphson 
method as described by Henrici [4] starting from an initial approximation to the 
solution. The total length in t of the curve is computed for the initial approximation 
and for each succeeding iterate. Corresponding values of h are obtained by dividing 
by the given number of mesh intervals. 

The effect pf the introduction of the curvature dependent terms may be assessed by 
considering the local truncation error of one of the difference approximations in 
Eq. (11). Thus the error in yt due to using the first of those approximations is 

Error = Ah2y,,, 

where A is a constant. If the curve has total length S and total angular variation 0, 
then 

h = (S + CO)/N (12) 
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where N is the number of mesh intervals. Also, 

Yttt = K~SYS,, - Y&> ts - 3(&Y,, - Ystss) fssllts”. 

For curves with positive curvature, Eq. (2) becomes 

t, = 1 + ce, 

so that the local error may be written 

Error = AWN2 (1 + Ws)2 W + ces) ysss - ce,,,y,](l + a,) 
- 3[(1 + ce,) yss - cedsi ce,,w + ce,y. (13) 

Where the solution curve is so straight that the derivatives of 8 appearing in Eq. (13) 
are negligibly small, the error depends on C only through the factor (1 + C@/S)2 and 
therefore increases as C increases. 

At the point of maximum curvature, where 1 BS 1 = K and eaS = 0, one finds 

I Error I < I A KS/N2 ! ysss I E, 

E = (1 + ayj2 (1 + BrMl + y14, 

a = @/SK, B = 1 + I Ysesss l/l Ysss I K Y = CK. 

Since O/S is the average curvature, 0 < 01 < 1. Also, from their formulas, p > 1 and 
y > 0. Differentiation gives 

din E -= 2iu. + j3 - 4 + (343 - 2a- 3p) y - aj3y’ 
dr (1 + YN + v)O + PYr) * 

One sees that an increase in C can decrease the error. This decrease occurs near 
C = 0 if (2or + /I - 4) is negative and also occurs in any case if C is large enough 
that the term (-$y2) dominates the numerator of the fraction. 

In summary, increasing the contribution of the curvature to the coordinate defini- 
tion by increasing C increases the local truncation error on straight sections of the 
solution curve but can reduce the error on curved sections. 

5. EXAMPLES 

Differential equation (4) is of boundary layer type if there are short sections of the 
solution curve on whichfis very large relative to its average value. The large value off 
is produced in the present examples by a parameter p. 

Other parameters governing the computations are the number N of mesh intervals 
and the constant C in the campylotropic coordinate specification. The relation between 
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N andp in the given coordinates has been explored by Dorr [5] who shows that, if N 
is not large enough, the numerical solution may be grossly inaccurate. In each case 
here, N is chosen sufficiently large so that reasonable accuracy is obtained. 

The method has been applied to four examples: The parabola provides the simplest 
case sincefis constant; the hyperbola is typical for boundary layer problems since, as 
the vertex curvature increases, the curve approaches two straight lines joined by a 
boundary layer; the exponential is a case with very large parameter similar to problems 
that have been previously treated; and the practical problem formulated by Troesch 
and solved numerically only with great difficulty, if certain standard approaches are 
used, has been the subject of several analyses, 

The calculations were begun in each case by a computation with parameter C = 0 
and a small number of mesh intervals, N = 4 or 8. Initial values of the xi and yi could 
be taken almost arbitrarily for cases of moderate curvature with p < 5. Less than 
10 Newton-Raphson iterations then converged to a change of less than 1O-8 out of a 
total range of 1 or 2 in either variable. Number N was then doubled, linear inter- 
polation provided initial values at the added nodes and the iterative solution process 
repeated. The error in the numerical solution was computed using the analytic 
solution. Sufficient accuracy was obtained with N no more than 128 in every case. 
Steps were then taken to increase C until the error passed through its minimum. For 
cases of large curvature, p > 5, the iterations fail to converge unless the initial values 
are chosen to be sufficiently accurate. The solution points for a not too much smaller 
value of p are satisfactory. 

A. Parabola Example 

The differential equation and boundary conditions are 

JJ” = p, y = 0 at x = f(2/p)1’2. 

The exact solution is 

y = (P/2) x2 - 1, 

and the maximum curvature is 

K=p. 

The error, defined as the maximum of the absolute value of the difference between 
the exact and computed values of y at each computed value of x, is plotted in Fig. 1 as 
a function of the nondimensional product CK. One sees that the difference scheme is 
less accurate as the curvature of the solution increases but that a proper choice of C 
can greatly reduce the error. 

The change to campylotropic coordinates is not recommended for use with linear 
equations since it introduces nonlinearities. The solution to this particular example 
would be found exactly by a second order method in the original variable. 



356 ABLOW AND SCHECHTER 

lO( 

8C 

6C 

4c 

2c 

10 

8 

0.8 

0.6 

0.4 

0.2 

0.1 I I I I I I I I III II I 
0 02 0.4 0.6 0.8 1 .o 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

CK 

FIG. 1. Error variation with parameter C: Parabola example, N = 32. 
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B. Hyperbola Example 

The hyperbola 

Y = WP)[l + (P” - 1) x2l1’2 

exhibits the general properties of boundary-layer-type solution curves most clearly. 
For large p, the solution follows the broken line y = I x I except for a sharp bend at the 
corner. The differential system reads 

y” = [(p” - l)/p][l + (p” - 1)x2]+, y(f1) = 1. 
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FIG. 2. Error variation with parameter C: Hyperbola example, N = 128. 

The maximum curvature is 

K = (p” - 1)/p. 

In every case computed, the error was found to be greatest at a point near the 

vertex. The error is plotted in Fig. 2. One sees that the use of positive C is more 

effective the more curved the solution, i.e., the larger p is. 

C. Exponential Example 

A simple example that has been carried to very large values of p is the differential 

equation for exponentials, 

y” = p2y. 
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The solution with y(O) = 0 and y(l) = 1 is 

y = (sinhpx)/sinhp. 

The corresponding curve lies close to y = 0 and to x = 1, fitting more tightly into the 
corner as p increases. The curvature K is 

K = p2y[ 1 + pzy2 + p2/sinh2 p]-3/2. 

For p > 5, the third term in the bracket is negligible with respect to the first. If that 
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FIG. 3. Error variation with parameter C: Exponential example, N = 128. 
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third term is deleted, (K/P) becomes a simple function of py with maximum at py = 
2-1/2. The maximum curvature K is then approximately 

K = 2~(3)-~/~. 

The computations for a given p start with estimated values of x and y at each node. 
As observed by Pearson [3], the accuracy of these values is less critical for small p. 
The calculations were, therefore, begun with p of the order of 10. The results of the 
computation with one value of p were used as starting values for the next larger p. The 
process worked properly with p increased by a factor of 21/2 at each step. These steps 
were taken to reach p = IO3 using iV = 128 mesh intervals and C = 0. An error of 
0.60 was obtained, the error being defined as the maximum difference between exact 
and computed values of y at the computed node values of x. (Such a large error implies 
that it is an accurate representation of the solution to the difference equations rather 
than the differential equation that is needed for the starting values.) Convergence to a 
change between iterates of less than 1O-s was obtained generally in five or fewer 
iterations. 

Steps in parameter C were then taken to find the least error of 0.005 at C = 0.96 x 
1O-3 as shown in Fig. 3. This error is of the same order of magnitude as that obtained 
by Pearson [3] using a few thousand mesh intervals in x. Mesh lengths in x for the 
present method may be computed as follows. 

For large p the solution curve lies close to y = 0 and x = 1 so that its length S is 
approximately 2 and angular variation is 77/2. Then h, the step size in t, is given by 
Eq. (12). Near x = 0, dy/dt and dfl/ds are nearly zero so that by Eq. (3) the step dx 
in x equals h. Near x = y = 1, dx/dt and df?/ds are nearly zero so that the step in y is 
h. The corresponding dx found using the slope of the solution curve, is dx = h/p. In 
the corner, near x = 1, y = 0, dxjds = dy/ds and de/ds = K so that Ax = 
2W2h/(l + CK). 

Numerical values for Ax in the present case are 

at (0, 01, 
at (1, 01, 
at (1, 1). 

It is noteworthy that the best value of C is found to give CK near 1 in this as in the 
previous examples. Nondimensional quantities influencing CK include the total 
angular variation 0 and SK where S is the length of the curve. 

D. Troesch’s Problem 

This problem arose in a study by B. A. Troesch of the confinement of a plasma 
column by radiation pressure and has been the subject of the several numerical 
investigations, among them those of Roberts and Shipman [6] and of Troesch [7]. The 
algorithm of Sincovec and Madsen [8] for solving two-dimensional partial differential 
equations by the method of lines has been used to solve Troesch’s one-dimensional 
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space problem as the eventual steady state solution of an associated partial differential 
equation in space and time. 

The problem reads 

y” = p sinh py, y(O) = 0, y(l) = 1. 

The exact solution may be written 

x = (k/p) F(arc tan sinh [py/2]] 1 - k2) 

where F is the elliptic integral of the first kind [9] with parameter (1 - k2), and k is 
obtained by imposing the condition x = 1 when y = 1. 

The solution to Troesch’s problem presents a curve running near y = 0 for 0 < 
x < 1 and near x = 1 for 0 < y < 1. The curve fits more tightly into the corner at 

N 

TABLE I 

Maximum Error, Troesch’s Problem 
Entry = Max 1 &,mputed - %xact 1 X lo6 

p = 6, K = 2.45 p = 10, K = 4.05 

32 64 32 64 128 64 

c 
0 

0.05 

0.10 
0.15 
0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

83.3 20.8 583 149.0 37.5 

72.8 18.3 574 147.6 37.1 

64.7 16.3 565 147.0 36.9 

55.7 14.0 146.7 36.9 

50.6 12.6 147.0 37.1 

51.3 12.8 148.9 37.4 

13.4 150.9 37.9 

14.4 152.8 38.4 

31.5” 

22.6 

17.2 

13.8 

11.5 

10.0 
9.0 

8.2 

7.6 

7.2 

6.83 

6.53 

6.53 

6.54 

6.58 

6.63 

a Entries in the last column are the maximum distance from a computed point to the exact solution 
curve multiplied by 106. 
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x = 1, y = 0 for larger p. Computational difficulties with standard methods arise for 
p as small as 5. 

The present scheme gives results of reasonable accuracy with a fairly coarse mesh, 
as shown in Table I. One sees that halving the mesh interval reduces the error by very 
nearly a factor of 4 so that an accuracy of order h2 has been attained with so few mesh 
points. Troesch [7] reports improved results with his shooting scheme when distance 
is introduced as a coordinate. 

The error is reduced from its value for C = 0 if C is given a proper positive value. 
However, the reduction is only about 35 “/o for p = 6 and much less for p = 10. This 
insensitivity to variations in C is due to the way the error has been defined. The 
difference between exact and computed values of x for each computed value of y has 
its maximum where x is a rapidly varying function of y, on the straight nearly 
horizontal part of the solution curve. The distance between the computed point and 
the nearest point on the exact solution curve is a more informative measure of the 
error and is more sensitive to variations in C. The last column of Table I records 
results using distance for error. The point with maximum error was found near the 
corner in every case. 

6. APPLICATIONS 

Problems of boundary-layer type arise frequently in many branches of science and 
engineering. Pearson [3] computes the location and velocity distribution through an 
air shock wave standing in a hyperbolic nozzle. 

The suitably normalized potential # in a semiconductor in thermal and electrical 
equilibrium and with a fixed charge of given density N(x) is determined [IO] by 

L2F = 2 sinh $ - N(x) 

where L is a material parameter. The given voltage drop determines boundary values 
for 4. One sees that this problem is very close to that of Troesch so that the present 
method should be readily applicable to this and similar semiconductor field effect 
computations. 

In many combustion problems, the chemistry may be approximated by a single 
overall reaction between a fuel and an oxidizer [ll]. The steady-state variation of 
concentrations of the two reactants diffusing toward one another is governed by 
equations of the form 

I4 = blY2 > 

Yi = b~lY2 1 

It follows that (yl - v2) is a linear function Ax + B with coefficients A and B 
determined by the boundary conditions. Eliminating y, leaves the equation 

14 = MY, - Ax - B) 
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from which y1 is to be determined. Although the form off is different from that in 
Troesch’s problem, the solution curve has similar properties. For large k, the curve 
either lies close to y1 = 0 or to y1 = Ax + B, i.e., to yz = 0, with a sharp bend near 
the intersection of these lines. The success of the present method with Troesch’s 
problem is likely to hold for the chemical diffusion problem also. 

7. CONCLUSIONS 

This paper presents a possible basis for designing an algorithm tegether with some 
supporting experimental evidence. The suggested introduction of an intrinsic 
coordinate complicates the differential system to be solved. This disadvantage can 
be outweighed for problems of boundary-layer type where the need for fewer mesh 
points than in other schemes permits computer storage and run time reductions. Some 
run time may be used for interpolations if results at prescribed values of the indepen- 
dent variable are required. Another difficulty, that the best value for C is unknown, 
can be overcome at further expense in run time by incorporating a method for error 
estimation and a search in C to reduce that error. 
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